How to Size and Fuse Wire for 12VDC Systems

CIRCUIT TYPE					CURRENT FLOW IN AMPS											
10% voltage drop Non Critical			3% VOLTAGE DROP Critical		5A	10A	15A	20A	25A	30A	40A	50A	60A	70A	80A	9(
	0 to 20 ft.	0 to 6.1 M	0 to 6 ft.	0 to 1.8 M		16 AWG	14 AWG	14 AWG	12 AWG	10	8	6	6	6		ſ Í
	30 ft.	9.1 M	10 ft.	3.0 M	16 AWG	14 AWG	12 AWG	12 AWG	10 AWG	AWG	AWG	AWG	AWG	AWG	4 AWG	A
	50 ft.	15.2 M	15 ft.	4.6 M		12 AWG	10	10 AWG	8 AWG	8 AWG	6		4	4 AWG		
	65 ft.	19.8 M	20 ft.	6.1 M	14 AWG		AWG	8 AWG		6	AWG	4	AWG	2	2	A
_	80 ft.	24.4 M	25 ft.	7.6 M	12	10 AWG	8		6 AWG	AWG	A	AWG	2	AWG	AWG	A
Ē	100.4	20 E M	20.4	0.1.14	AWG		AWG	6			AWG		AŴG	1	1	

Step #1 – Select Wire Size from VOLTAGE DROP TABLE

- Determine expected max amp draw based on device(s)
- Determine voltage drop criticality based on device type(s)
- Select wire size to satisfy the amps & volts at distance requirements
- This selection is driven by performance requirements involving amps & volts at a distance, where voltage drop over distance can degrade system performance and often harm devices

Step #2 Default - Select Fuse Size based on ALLOWABLE AMPERAGE TABLE

- Determine wire/insulation temperature rating
- Determine mounting location and exposure to other heat sources, and other derating factors
- Select fuse size to blow at or below the allowable wire amperage
- This selection is driven solely by wire/insulation temperature safety
- The goal is to protect the wire from overload
- for panel/sub-panel setups, consult NEC/ABYC/etc for more advanced rules
- wire sized per the 3% & 10% rules will typically operate below the allowed amperage (good!)

Step #2 Better – Select Fuse Size BETWEEN Expected Load and Allowable Amperage

- For <u>dedicated</u> wires to <u>known</u> device load(s)
 - (a) Select fuse size as specified by the device manufacturer. Most are close to the (b) rule
 - (b) Select fuse size based on ~125% of the expected load
 - (c) **Select fuse size** to be halfway or more between the expected load and the allowable amperage if experiencing nuisance blows, especially with motors and inverters
- This "better" step adds in the device manufacturer's fusing requirements
- The goal is to protect the wire and the device from overload (e.g., clogged water pump)
- Thermal fusing at the power source and smaller device fusing at the device is also acceptable
- 125% (b) is based on the widespread "practice" of only running systems at 80% of rated capacity, and on the 80% NEC OCPD sizing rules for continuous loads on service > feeder > branch circuits

see BlueSea/etc for full table, or use a voltage drop calculator this table is 12VDC specific this table uses "round trip" distances

References (tables abstracted on this slide for copyright reasons)

- BlueSea best to-the-point resource
- One page PDF <u>https://d2pyqm2yd3fw2i.cloudfront.net/files/resources/reference/20010.pdf</u>
- "Choose wire", voltage drop table <u>https://www.bluesea.com/resources/1437</u> (shown here)
- "Choose fuse", max fuse size selection table <u>https://www.bluesea.com/resources/1441</u>
- ABYC excellent boat standard partially leveraged by the RV industry
 ABYC E-09, all tables <u>https://law.resource.org/pub/us/cfr/ibr/001/abyc.E-09.1990.pdf</u> (shown here)
 ABYC E-11, all tables <u>http://www.elettronavigare.it/files/E-11%20norme%20americane.pdf</u>
- ANSI RVIA LV (US) and CSA Z240 (Canada) RV standards loosely used by the RV industry
- RVIA LV (paywalled) <u>https://www.rvia.org/.../association-and-ansi-standards</u>
- CSA Z240 (paywalled) https://www.scc.ca/en/standardsdb/standards/7244
- http://rv-project.com/resources/publications.php
- NEC Standards that underlie the ABYC and RVIA Standards
 - NEC (NFPA 70) Table 310-15 for ampacity <u>https://www.lapptannehill.com/.../ampacity-ch</u>
 - NEC (NFPA 70) full (paywalled) <u>https://www.nfpa.org/.../detail?code=70</u>
- Other
 - Federal CFR 183.425, thermal https://www.law.cornell.edu/cfr/text/33/183.425
 - Anchor wire specs <u>https://us.binnacle.com/pdf/AncorWireTechnicalDataCatalog.pdf</u>
 - <u>https://diysolarforum.com ... mobile-vehicle-rv-electrical.5587</u>
 - <u>https://www.forestriverforums.com/forums/f2/are-there-codes-for-rv-construction-165</u>
 77.html
- <u>https://www.rvtravel.com/rv-electricity-part1-abcs-campground-power</u>

see ABYC or NEC 310-15 for full table

TABLE 1 ALLOWABLE AMPERAGE OF CONDUCTORS FOR UNDER 50 VOLTS

	Temperature Rating of Conductor Insulation											
CONDUCTOR	60° C (140° F)		75° C (167° F)		80 (176	°C 5°F)	90° C (194° F)		105° C (221° F)		1 (2	
SIZE ENGLISH(METRIC) SEE TABLE IV	OUTSIDE ENGINE SPACES	INSIDE ENGINE SPACES	OUTSIDE ENGINE SPACES	INSIDE ENGINE SPACES	OUTSIDE ENGINE SPACES	INSIDE ENGINE SPACES	OUTSIDE ENGINE SPACES	INSIDE ENGINE SPACES	OUTSIDE ENGINE SPACES	INSIDE ENGINE SPACES	OUTSID ENGINE SPACES	
18 (0.8)	10	5.8	10	7.5	15	11.7	20	16.4	20	17.0	25	
16 (1)	15	8.7	15	11.3	20	15.6	25	20.5	25	21.3	30	
14 (2)	20	11.6	20	15.0	25	19.5	30	24.6	35	29.8	40	
12 (3)	25	14.5	25	18.8	35	27.3	40	32.8	45	38.3	50	
10 (5)	40	23.2	40	30.0	50	39.0	55	45.1	60	51.0	70	
8 (8)	55	31.9	65	48.8	70	54.6	70	57.4	80	68.0	90	
6 (13)	80	46.4	95	71.3	100	78.0	100	82.0	120	102.0	125	
4 (10)	105	60.9	125	93.8	130	101.4	135	110 7	160	136.0	170	

How Many Amps Can a 10AWG Wire Really Handle ?

The up shot is – as distance and amperage-load increase on a wire, the first concern encountered is "voltage drop" and failing to deliver enough volts for a device to operate properly, and then as the amperage-load further increases independent of distance, the second concern encountered is "thermal overload" of the wire and the risk of fire

Voltage Drop Table & Limits

Thermal Safety Table & Limits

for a given amp load, how long can 10AWG wire be before suffering a 3% or 10% voltage drop?

for a given insulation rating and mounting location, how many amps can 10AWG wire carry safely?

